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A method for calculating free-energy differences based on a free-energy perturbation �FEP� formalism in an
alloy system described by two different Hamiltonians is reported. The intended application is the calculation of
solid-liquid phase equilibria in alloys with the accuracy of first-principles electronic density-functional theory
�DFT�. For this purpose free energies are derived with a classical interatomic potential, and FEP calculations
are used to compute corrections to these reference values. For practical applications of this approach, due to the
relatively high computational cost of DFT calculations, it is critical that the FEP calculations converge rapidly
in terms of the number of samples used to estimate relevant ensemble averages. This issue is investigated in the
current study employing two classical interatomic-potential models for Ni-Cu. These models yield differences
in predicted phase-boundary temperatures of approximately 100 K, comparable to those that might be expected
between a DFT Hamiltonian and a well-fit classical potential. We show that for pure elements the FEP
calculations converge rapidly with the number of samples, yielding free-energy differences converged to within
a fraction of a meV/atom in a few dozen energy calculations. For a concentrated equiatomic alloy similar
precision requires roughly a hundred samples. The results suggest that the proposed methodology could
provide a computationally tractable framework for calculating solid-liquid phase equilibria in concentrated
alloys with DFT accuracy.
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I. INTRODUCTION

Over the past two decades first-principles-based methods
have been extensively developed for the calculation of solid-
state alloy phase diagrams within the predictive framework
of electronic density-functional theory �DFT�.1–7 These
methods generally rely on the use of lattice-model Hamilto-
nians, with interaction parameters derived from first-
principles calculations, to model the configurational energet-
ics of solid alloy phases. The resulting model for alloy
energetics is then combined with �quasi-� Harmonic theory
and Monte Carlo simulations as a framework for computing
vibrational and configurational contributions to finite-
temperature free energies, respectively. The computational
efficiency and predictive capabilities of such approaches
have led to growing applications for metallic, semiconductor,
and oxide systems. In contrast to this favorable situation for
calculations of solid-state thermodynamic properties and
phase boundaries, far less progress has been demonstrated to
date in the application of first-principles methods for com-
puting solid-liquid alloy phase equilibria.

While accurate ab initio calculations of melting lines have
been demonstrated for pure elements and stoichiometric
compounds based on quantum-molecular-dynamics �QMD�
simulations,8–11 these calculations are typically based on
thermodynamic-integration techniques,12 which are not eas-
ily generalized for applications to concentrated alloys with
compositional disorder. To date first-principles calculations
of alloy solid-liquid phase boundaries have been demon-
strated from QMD thermodynamic-integration methods only
in the limit of dilute solute compositions.13,14 For concen-
trated alloys, the challenge lies in the need to average over
the ionic configurational degrees of freedom, which for a

solid substitutional alloy requires the use of Monte Carlo
sampling methodologies, owing to the slow diffusive time
scales over which these degrees of freedom are sampled in
molecular dynamics �MD�. For liquid-phase alloys, where
diffusive time scales are much faster, sampling over the con-
figurational degrees of freedom is possible by MD, but time
scales on the order of tens of picoseconds are required,
which are still relatively long for QMD simulations consid-
ering that several such runs at different compositions and
temperatures are generally required to construct free-energy
curves and associated phase boundaries.

In this paper we propose a framework that we expect to
be useful for first-principles phase-boundary calculations in
concentrated alloys based on the framework of thermody-
namic free-energy perturbation �FEP� theory.12,15 The basic
approach is illustrated in Fig. 1. It involves the sampling of
configurational and atomic displacement degrees of freedom
employing a classical interatomic potential in Monte Carlo
simulations to generate reference free-energy curves for solid
and liquid phases, as illustrated by the dashed lines and open
symbols in Fig. 1. Such calculations are further used to gen-
erate trajectories as the basis for FEP calculations and to
compute the free-energy differences between the classical
and DFT Hamiltonians, thus “correcting” the predictions of
the classical potential, as illustrated by the solid lines and
filled symbols in Fig. 1. The result of the procedure is then
DFT-based results for solid and liquid free energies, which
can be used both to construct phase boundaries, and to pro-
vide thermodynamic driving forces for continuum models for
solidification kinetics.

The purpose of this work is to employ classical potentials
to test the computational efficiency of the approach outlined
above. The remainder of this paper is organized as follows.
In Sec. II we review �i� a methodology for deriving the ref-
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erence solid and liquid free-energy curves based on classical
thermodynamic integration using semi-grand-canonical
Monte Carlo methods and �ii� a free-energy perturbation ap-
proach for computing corrections to the resulting free-energy
curves. The central issue concerning the practical implemen-
tation of this approach is the convergence of the second step
with respect to number of samples employed in the estima-
tion of relevant ensemble averages. We therefore present in
Sec. III the results of a test based on the use of two different
classical potentials that are known to give substantially dif-
ferent solid-liquid phase diagrams for the same system. The
results of these tests suggest rapid convergence both for pure
elements and for concentrated alloys. The results are dis-
cussed in Sec. IV and the main conclusions summarized in
Sec. V.

II. METHODS

A. Thermodynamic-integration calculations of reference
free energies

As described in Sec. I, the first step in the proposed ap-
proach involves the calculation of free energies as a function
of composition for both solid and liquid alloy phases at fixed
temperature and pressure. We briefly review here an ap-
proach that has been described in detail in previous
publications.16,17 The approach starts from the knowledge of
the equilibrium melting temperature �Tmelting� for the pure

solvent material �referred to here as species 1�, where the
solid and liquid free energies are equal. The free-energy dif-
ference ��Gmelting� between solid and liquid phases at some
particular temperature �T� above or below Tmelting is deter-
mined by performing thermodynamic integration based on
the Gibbs-Helmholtz relation:

���Gmelting/T�/�T = − �Hmelting/T2, �1�

where �Gmelting=G0
l −G0

s , G0
� denotes the Gibbs free energy

of phase � �solid or liquid� for pure species 1, and similarly
for the enthalpy of melting, �Hmelting=H0

l −H0
s . The alloy

free energy �G�� as a function of composition is then com-
puted by integrating the following relation:

�G�/�x2 = ���, �2�

where ��=�2−�1 is the difference in chemical potential
between the solute and solvent species, and x2 denotes the
mole fraction of solute. This latter integration requires
knowledge of the relationship ���x2� at constant tempera-
ture and pressure, which can be readily derived from Monte
Carlo simulations employing a semi-grand-canonical �SGC�
ensemble.18

For the purpose of performing the integration of Eq. �2�, it
is useful to fit an analytical form for �� by decomposing this
quantity into ideal and excess contributions as follows:

����x2� = kBT ln
x2

1 − x2
+ ��xs

� �x2� , �3�

where the last term ���xs
� � typically can be fit by a low-order

polynomial for the purpose of integration. The result is an
expression for the free energy of phase � that can be written
in the following form:

G��xB,P,T� = G0
��P,T� + kBT�x2 ln�x2� + �1 − x2�ln�1 − x2��

+ �
i

n

Ai
��P,T�x2

i , �4�

where G0
��P ,T� denotes the free energy of pure species 1 in

the � phase, which needs only to be defined to within an
arbitrary constant; this value can be assigned zero for one of
the phases �e.g., solid� with the value for the other phase
�e.g., liquid� being given by the free-energy difference
��Gmelting� as derived from the integration of Eq. �1�. The
polynomial coefficients �Ai

�� in Eq. �4� are obtained from the
results of SGC Monte Carlo derived relationship between
�� and x2. Examples demonstrating the use of the approach
described above are given in Refs. 16, 17, and 19.

B. Free-energy perturbation method

The procedure described in Sec. II A can be implemented
straightforwardly with a classical interatomic-potential
model to derive a reference free-energy curve. We turn next
to the problem of correcting these reference free energies
employing an approach that we will refer to as free energy
peturbation �FEP� calculations. From Sec. II A, the free-
energy curves for solid and liquid phases can be constructed
from the knowledge of �G0=G0

l −G0
s �i.e., the difference in

FIG. 1. �Color online� Schematic illustration of a two-step ap-
proach to calculate solid-liquid boundaries in concentrated alloys
with ab initio accuracy. In the first step, the free energy versus
concentration �mole fraction of element 2, x2� curve is calculated
using standard thermodynamic-integration techniques with a refer-
ence classical interatomic potential �open symbols� and fitting the
calculated excess free energies to a polynomial expansion �see de-
tail in the text�. In the second step, a thermodynamic perturbation
scheme is applied to calculate the difference in the free energy
between the reference potential and a fully ab initio DFT calcula-
tion at several concentrations �filled symbols�. The points so calcu-
lated can be used to refit the polynomial expansion of the excess
free energy, thus gaining an ab initio accuracy in the calculations of
concentrated-alloy free energies and associated solid and liquid
phase-boundary compositions, x2

s and x2
l , respectively.
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free energies between liquid and solid phases for pure spe-
cies 1�, as well as the values of the polynomial coefficients
Ai

� in each phase. The correction to the first term ��G0� can
be derived by computing the differences in elemental solid
and liquid free energies between the reference and final
Hamiltonians; similar calculations for alloys with a few dif-
ferent compositions can then be used to reoptimize the coef-
ficients Ai in Eq. �4� to construct the final free-energy curve.
In this paper we propose to calculate these free-energy cor-
rections employing a FEP methodology, which dates back to
Zwanzig.15

We concentrate here on the calculation of free-energy dif-
ferences at zero pressure, where the Gibbs �G� and Helm-
holtz �F� free energies are equal, i.e., G=F+ PV=F. Exten-
sion to finite pressure is straightforward. The difference in
free energies between two systems A and B, whose thermo-
dynamic properties are governed by the Hamiltonians HA
and HB, can be written as

��FA→B = − ln��exp − ��UA→B��� , �5�

where �=1 /kBT �kB being Boltzmann’s constant� and UA→B
is the potential energy difference calculated for the same
configuration using the two different Hamiltonians HA and
HB. The brackets �¯� indicate a canonical ensemble average
over the configurations of system A only. It is interesting to
note that this FEP formula can be thought of as a particular
case of Jarzynski’s relation20 connecting nonequilibrium
work values and free-energy differences:

��FA→B = − ln��exp�− �WA→B��� , �6�

where WA→B is now the work done along any path connect-
ing A to B. The FEP procedure can be thought of as a limit of
Eq. �6�, where one takes a nonequilibrium path involving an
infinitely quick switch between the two states.

In practical applications, the ensemble average in Eq. �5�
is approximated by a finite sum over N configurations ���
generated from an equilibrium NVT �constant number of
particles N, volume V and temperture T� molecular dynamics
or Monte Carlo simulation for system A:

��FA→B = − ln� 1

N
�
�=1

N

exp�− �UA→B����	 . �7�

Compared to commonly used equilibrium thermodynamic-
integration approaches, this FEP formulation is conceptually
simpler as no information other than the internal energy of
the system is needed and the approach avoids the necessity
of equilibrating the final state configurations, which would
otherwise give an added computational cost. However, the
use of FEP formalism for the calculations of free-energy dif-
ferences has been shown in many cases to suffer from con-
vergence problems and associated overbias of free-energy
differences. Several studies have been undertaken to under-
stand the origins of these problems �see Refs. 21–25�, and it
has been shown that they arise from the entropy difference
between the target and reference system. As will be dis-
cussed below, rapid convergence of Eq. �7� requires that sys-
tems A and B are sufficiently “close” in the sense that will be
described in Sec. IV. Hence, the purpose of the calculations

described in Secs. III and IV is to assess the convergence
properties of Eq. �7� for two classical interatomic-potential
systems giving differences in energy and phase diagrams
comparable to those expected between a good classical inter-
atomic potential and a DFT Hamiltonian.

C. Implementation

As described in Sec. II B, rapid convergence of Eq. �7�
can be expected if the configurational energetics of the ref-
erence Hamiltonian are sufficiently close to those of the final
state. Efficient applications of the FEP formalism involving
the use of DFT Hamiltonians as the target result thus require
high-quality classical potentials, which in practice may be
obtained by fitting to an extensive enough set of data gener-
ated from the DFT Hamiltonian.

To better quantify the statistical convergence properties of
Eq. �7� we consider here a test system, namely, Ni-Cu. We do
not undertake DFT calculations in this analysis but rather
choose as the reference and target systems �i.e., systems A
and B in the notation of the previous section� two classical
Hamiltonians that are known to give rise to significantly dif-
ferent phase boundaries �e.g., solidus and liquidus bound-
aries differing by roughly 100 K� for this system.

We choose as our reference and target systems the
embedded-atom-method �EAM� Cu-Ni potentials due to
Foiles26 �referred to hereafter as the “smf7” potential� and
Foiles, Baskes, and Daw27 �referred to hereafter as the “u3”
potential�, respectively. From coexistence simulations the
melting temperatures of the smf7 and u3 potentials for el-
emental Ni have previously been calculated to be approxi-
mately 1820 and 1710 K, respectively.28,29 For use in Sec.
III, we will take the difference in melting temperature be-
tween the target �u3� and reference �smf7� systems as
�Tmelting=−110 K with an estimated standard statistical un-
certainty of 5 K.

To apply the FEP method to compute the free-energy dif-
ferences between reference and target potentials for pure el-
ements, the configurations � in Eq. �7� were generated em-
ploying standard NVT molecular-dynamics simulations with
a system size of 500 atoms �corresponding to 5�5�5 fcc
unit cells for the solid phase� and periodic boundary condi-
tions �subsequent NPT �constant number of particles N, pres-
sure P and temperature T� dynamics simulations were also
performed to compute pressure corrections to melting tem-
peratures as described in Appendix�. Temperature was main-
tained constant using a Nose-Hoover thermostat �similarly,
pressure in the NPT simulations was maintained with a
Nose-Hoover barostat�30 and the integration of the equations
of motion was performed using a velocity-Verlet algorithm12

with a time step of 2 ps. All simulations were based on the
use of the LAMMPS code.31 Simulations were performed at a
temperature of 1820 K for pure Ni. The MD trajectories were
used to generate statistically independent states collecting
one configuration every 0.1 ps. Through these configurations
the free-energy difference is calculated through Eq. �7� by
computing UA→B as the difference in potential energies be-
tween the reference and target potential for each sampled
configuration.
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In addition to considering pure elements, we applied the
FEP method to compute free-energy differences between ref-
erence and target potentials for a concentrated equiatomic
�xNi=0.5� alloy using Monte Carlo simulations in a canonical
�NVT� ensemble with the volume V chosen to give zero
pressure for the reference system. As in the MD simulations,
we employed 500-atom supercells with periodic boundary
conditions. The displacement and configurational degrees of
freedom of the alloy were sampled through Monte Carlo
steps that involved selecting two atoms at random and at-
tempting displacements of each with a maximum value of
0.2 Å along each Cartesian direction, coupled with an at-
tempted exchange of species if the two atoms selected were
of opposite type. These attempted moves were accepted or
rejected based on the Metropolis algorithm appropriate for a
canonical ensemble at a temperature of 1500 K. A total of
500 independent configurations were generated from these
simulations for use in Eq. �7�.

III. RESULTS

Figure 2 plots the value of the calculated free-energy dif-
ferences between target and reference systems as a function
of the number of steps �N� taken into consideration in Eq. �7�
for both the solid and liquid phases in the pure system �bot-
tom panel� and in the concentrated Ni50Cu50 alloy �top
panel�. We report the results in the form of block averages as
defined in Ref. 32.

The results in Fig. 2 show that the calculated free-energy
values converge very rapidly for the pure element, for both
the liquid and solid phases, with only a few times ten steps
required to obtain results converged to within a fraction of a
meV per atom. For the alloy the convergence is clearly seen
to be slower �especially in the solid phase�; however, con-
vergence to a fraction of a meV/atom is still achievable in

approximately 100 steps, a value of N which is definitely
achievable in an ab initio DFT framework. Moreover, a cor-
rection to the results to estimate the N→� limit could be
applied if needed, further improving the accuracy of the re-
sult. As shown in Refs. 21, 22, and 32, this correction gen-
erally implies writing the free-energy variation as block av-
erages �defined in the references above� and fitting it to a
polynomial of the form

�FN = �F� + 	1�1/N�1

 , �8�

where 
1 and 	1 are fitting parameters and N is the number
of work values included in the definition of the block aver-
age. A theoretical justification for this form of the fitting
function is given in Ref. 21, while for practical applications
the reader is referred to Refs. 22 and 32.

To check that the results in Fig. 2 are converging to the
correct values, we use these numbers to perform a calcula-
tion of the difference in melting points predicted by the two
Ni potentials for comparison with the value of �T melting=
−110�25 K derived from coexistence simulations. For this
purpose we make use of the following relationship between
�Gmelting=Gl−Gs and temperature:

�Gmelting

Lmelting
= 1 −

T

Tmelting
, �9�

where Lmelting is the enthalpy of melting �i.e., the latent heat
of fusion at constant pressure�. Equation �9� can be derived
from the classical Vant’Hoff equation33 under the assumption
that L does not vary in the interval �T-Tmelt�, which is a valid
assumption in this case. For the reference smf7 potential we
have performed simulations at the equilibrium melting tem-
perature, T melting

smf7 =1820 K, where �Gmelting
smf7 =0. The melting

temperature for the target u3 potential �T melting
u3 � can then be

derived with the aid of Eq. �9� using the calculated value of
�Gmelting

u3 obtained from the solid and liquid free energies in
Fig. 2 as follows:

T melting
smf7

T melting
u3 = 1 −

�Gmelting
u3

Lmelting
u3 . �10�

As we are interested in the zero-pressure melting point, we
have G=F. Calculation of �Fmelting is performed by applica-
tion of Eq. �7�. We refer to the Appendix for further details of
this calculation.

In Fig. 3 we present the calculated difference in melting
temperatures as a function of the number of samples �N�
used in the FEP formula Eq. �7�. The present results lead to
a predicted melting temperature of approximately 1711.5 K,
which agrees with the value of 1710 K derived from previ-
ous coexistence simulations, within the statistical uncertainty
of 5 K quoted above. We also note that the present results for
�Tmelting are seen to converge to within a fraction of a Kelvin
within a few dozen samples. The results thus suggest that the
formalism outlined in this paper may provide an extremely
efficient method for obtaining melting points of metals from
DFT calculations, employing FEP calculations based on ref-
erence classical EAM potentials.

FIG. 2. �Color online� Free-energy difference as given in Eq.
�17� as a function of the number of steps �N� taken into consider-
ation in the averaging. The bottom panel presents free-energy dif-
ferences between the u3 and smf7 potentials for solid and liquid
phases of elemental Ni. The top panel represents free-energy differ-
ences between solid-solution and liquid phases of a concentrated
Ni50Cu50 alloy.
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IV. DISCUSSION

We turn now to a discussion of the factors underlying the
relatively fast convergence of Eq. �7� in our calculations, and
the implications of our results for free-energy calculations in
alloys. The formal mathematical model on which our argu-
ment is based was first developed by Lu and Kofke in Ref.
23, where they have shown that, under some basic assump-
tions, the exponential fractional inaccuracy of the calculated
free-energy difference �i.e., the difference between the expo-
nential of the true and calculated free-energy difference with
respect to the former� can be written as

exp�− ��Ftrue� − exp�− ��Fcalc,A�
exp�− ��Ftrue�

= 

−�

W0

PB�W�dW ,

�11�

where the subscripts A and B refer to the choice of the par-
ticular reference system, PX�W� is the distribution of the
work values �i.e., the difference in energy in our case� ob-
tained in going from the reference �X� to the target system,
and W0 is the work value above which complete sampling is
assumed. A graphical interpretation of Eq. �11� shows that
the inaccuracy in the estimate ��Fcalc,A� of the free energy
calculated going from A to B is given by the area under the
probability distribution PB�W� of work values one would ob-
tain going from B to A �i.e., taking B as the reference sys-
tem�, see for reference Fig. 4.

The most important message that one can obtain from Eq.
�11� is that the FEP formula can be successfully used only in
those cases where the two systems under consideration gen-
erate highly overlapping work distributions. This condition is
obtained if, as in our case, the Hamiltonians describing the
two systems A and B mainly sample the same part of the
phase space. To clarify this point consider the following
qualitative model �see Fig. 5 for reference�, which we hope
can give some more insights on the physics underlying the
problem.

Suppose that a particular configuration � has a high prob-
ability of appearing in system A because it is a low-energy

configuration but has a low probability of being observed in
system B, where it has a high energy �left image in Fig. 5�.
For this configuration swapping between the two different

potentials gives rise to a work value of W̄=UB−UA. Finding

a value W̄ starting from system A has a high probability, i.e.,

PA�W̄� is high. However, as � is a high-energy configuration
in the B system this will rarely be sampled starting from

system B so PB�W̄� is low, and thus the overlap between the
two work distribution curves and hence the accuracy of the
calculations will be low. The same explanation can be used
where the configuration � is now a low-energy configuration
for both potentials; in this case though one will have a very

good overlap between PA�W̄� and PB�W̄� and a high accuracy
will be obtained �right image in Fig. 5�. In the present work
the rapid convergence to the correct value of the free-energy
difference calculations implies that the two different EAM
potentials for Ni-Cu are apparently close enough to sample
similar regions of phase space.

We believe our result to be quite general and that a simi-
larly rapid convergence can be obtained for other systems as
well. Since the pioneering work of Ercolessi and Adams34 in
the early 90’s, the development of interatomic potentials
based on fitting to ab initio results has become relatively
standard practice. This approach has been used for a variety
of systems including pure metals,35,36 alloys,37–39 and other
inorganic compounds.40,41 As these potentials are constructed
to accurately reproduce ab initio energies for many different
configurations, they are natural candidates for applications of
the method we have described. Moreover, if the spread in the
energies is still too high to achieve rapid convergence, the
newly calculated ab initio energies can be included in the
database to refit the potential, improving its accuracy and
thus enhancing convergence with little additional computa-
tional cost.

The results of this work suggest that it should be feasible

FIG. 3. �Color online� Calculated difference in melting tempera-
tures for Ni from smf7 and u3 potentials, as a function of the num-
ber of steps taken in consideration in the FEP average �red curve�.

FIG. 4. �Color online� Graphical representation of Eq. �11�. The
fractional inaccuracy for a given simulation attempting to calculate
a free-energy difference between system A and B is given by the
area under PB below a certain value W0. Above W0 complete sam-
pling of PA is assumed �Ref. 23�. Gaussian distributions are shown
for illustrative purposes, although the real distributions need not be
Gaussian in an actual simulation.
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to use the FEP approach for a target system involving an ab
initio potential, as a framework for calculating accurate ab
initio free-energy differences in a straightforward and com-
putationally tractable manner, even for concentrated alloys
where alternative approaches involving equilibrium
thermodynamic-integration methods are expected to be much
more computationally expensive. We want to stress here that
the availability of a good, starting potential �i.e., one close to
the target Hamiltonian� is an absolutely necessary prerequi-
site for such applications involving DFT target Hamiltonians.
A potential which leads to energy difference significantly
different from DFT would give rise to a slower convergence
rate of Eq. �7�.

Our approach is related to that recently proposed by Gre-
eff in Ref. 42. In that paper only the case of a pure liquid is
considered and the free-energy difference is calculated by a
truncated cumulant expansion of Eq. �5�. We have shown
here our nonperturbative method is viable for a concentrated
alloy in both solid and liquid phases. The perturbative ap-
proach of Greeff should also be applicable to alloys, but the
trade off between computational time and accuracy has not
yet been studied.

V. CONCLUSIONS

In this paper, we have demonstrated that it is possible to
calculate free-energy differences in both elemental metals
and concentrated alloys in an accurate and computationally
efficient manner within a simple FEP formalism. We demon-
strate that for typical differences one would expect between
two reasonably accurate potential energy descriptions in a
metal, free-energy values can be calculated to a precision
better than 1 meV/atom within approximately a hundred
sampling steps. We further establish that the values obtained
from the FEP formalism converge to the correct limits by

using the calculated free energies to compute the melting
temperature of Ni using a EAM potential for which the pre-
sents results are within the statistical error bars of the values
derived independently from coexistence simulations.28,29

The present calculations are found to suffer only weakly
from the convergence problems that can be present in using a
FEP formalism. We discuss how this finding can be associ-
ated with the relatively small differences in entropy between
the reference and target systems, meaning that the systems
can be considered to be small perturbations from one an-
other. We expect that the approach outlined in this paper
offers a reasonably efficient way to tackle the problem of
calculating solid-liquid phase boundaries in alloys with DFT
accuracy over the entire composition range.
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APPENDIX

Calculation of �Fmelting in our framework needs in prin-
ciple the calculation of two different terms for both the solid
and liquid phase, provided the simulation temperature is the
same:

(b)(a)

FIG. 5. �Color online� Comparison of work values W given by direct �A→B� and inverse �B→A� processes and their relationship to the
energy landscape �here exemplified as a single coordinate system�. The arrows indicate the most probable work value sampled WX starting
from system x. �a� The probability of direct and reverse observation of a work value W is high in both systems; hence, convergence is fast.
�b� Configurations sampled by system A and system B are rarely the same, the generated work distribution will poorly overlap leading to
slow convergence.
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F�
A�V�

A,T� = F�
B�V�

B,T� + 

V�

B

V�
A � �F�

B�V,T�
�V

�
T

dV − �FA→B,

�12�

�FA→B = F�
B�V�

A,T� − F�
A�V�

A,T� . �13�

Here the superscript refers to the two different potentials
between which the free-energy difference has to be calcu-
lated and the Greek subscript to the phase �here solid or
liquid�. Further, V�

A is the equilibrium volume of phase � at
the temperature for which sampling has been made for po-
tential A �the smf7 potential in our case�, i.e., what is referred
to here as TA. By contrast, V�

B is the equilibrium volume of
phase � at the melting temperature TB calculated in some
other simulation using potential B �the u3 potential in our
case�.

Using the thermodynamic identities

��F��V,T�
�V

�
T

= − p�, �14�

combined with Eq. �12� yield

�Fmelting
A �V�/�

A ,T� = Fmelting
B �V�/�

B ,T� − 

V�

B

V�
A

p�
BdV + 


V�
B

V�
A

p�
AdV

− �FA→B�V�
A,T� . �15�

The first term on the right-hand side is zero since we start
our simulation at the melting temperature of the reference
potential �smf7� and is thus the free energy of melting is by
definition zero. The second and third terms are pressure
terms, which depend on the fact that the equilibrium volumes
are not necessarily the same for the two different potentials.

For what concerns the pressure term in Eq. �15�,
p�,�

B �V�,�
B ,T�=0, and we take in the integration p�,�

B =const
= p�,�

B �V�,�
A ,T� /2, i.e., we considered p linearly increasing in

the interval �VB−VA�. This assumption is found to be well
justified from the behavior of the computed pressure during
the simulation.

Under the above assumptions, Eq. �15� can be rewritten as
follows:

�Fmelting
A �V�/�

B ,T� = −
1

2
p�

B�V�
A,T��V�

A�T� − V�
B�T��

+
1

2
p�

B�V�
A,T��V�

A�T� − V�
B�T��

− �Fmelting
A→B �V�

A,T� . �16�

Considering the last term in Eq. �16� by applying the FEP
equation, we have for both solid and liquid

�FA→B = −
1

�
�exp − ��UB − UA��A. �17�

This average is calculated by taking snapshots of the con-
figurations generated through MD with the smf7 potential
every 100 fs in order to avoid statistical correlations between
them, switching to the u3 potential and calculating UA-UB.

Figure 6 shows the results of NPT MD simulations to
determine the equilibrium volumes of both the u3 and smf7
potentials.

From these simulations we calculated the pressure term,
which is here equal to

�Fpressure = −
1

2
p�

smf7�V�
u3,T��V�

u3�T� − V�
smf7�T��

+
1

2
p�

smf7�V�
u3,T��V�

u3�T� − V�
smf7�T��

= −
1

2
�− 8.519 Kbar��6455 Å3 − 6381 Å3�

+
1

2
�− 3.947 Kbar��6001 Å3 − 5978 Å3�

= 169 meV = 0.34 meV/atom.

This value is definitely negligible.

(b)

(a)

FIG. 6. �Color online� �a� Fluctuation of volume during NPT
simulations at 0 pressure for u3 and smf7 potentials. Notice that the
difference in the equilibrium volume given by the two potentials is
close to zero. �b� NVT simulation using the smf7 potential at V
=Vu3 to calculate the average pressure during the run. As there is
little difference in the calculated equilibrium volumes, the average
pressure is almost zero, hence, the little correction in Eq. �15� due
to the pressure term.
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